
DEPLOYING A DOCKER FILE/CONTAINER ON AZURE

Problem Statement –

Rather than using VM which are Very slow and hard to manage also not cost efficient

Docker came into picture

Containers require less system resources than traditional or hardware virtual machine
environments because they don't include operating system images. Applications running in
containers can be deployed easily to multiple different operating systems and hardware
platforms.

Introduction-

Docker is used to create, run and deploy applications in containers. A Docker image
contains application code, libraries, tools, dependencies and other files needed to make an
application run. When a user runs an image, it can become one or many instances of a
container.

Docker images have multiple layers, each one originates from the previous layer but is
different from it. The layers speed up Docker builds while increasing reusability and
decreasing disk use. Image layers are also read-only files.

In this article we will look into how to create a docker application or image as well as deploy
it on Microsoft Azure.

What is a Container?

A container is basically a unit of software which packages up the actual required code for
application with all of its respective dependencies as a standalone image. This image run
very quickly and works on different operating systems and environments. It is lightweight
and all the libraries are installed inside the container itself so that there is no need for any
other installations apart from docker itself. It also ensures that it is secure and highly
available.

Why Use Docker?

• Fast, consistent delivery of your applications –
With docker you can quickly create and deploy several containers within seconds and
hence several applications with it.

• Responsive deployment and scaling
The docker container-based platform allows containers to be run locally, on cloud or
in a mixture of environments easily with scaling.

• Running more workloads on the same hardware is possible with docker where
smaller containers can be run on the same hardware parallelly easily.

Benefits of using Azure to integrate with docker containers:
1. Support for cross platform like windows and Linux server containers
2. Higher reliability and availability
3. Simplification of single and multi-container deployment to seamlessly deploy them

on Azure’s cloud services.
4. Integrated Graphical User Management panel for developers
5. Low-Cost Deployment and pay as you go services.

Solution

Prerequisites and tools–

1. An active Docker Hub Account
2. Basic Knowledge about Docker
3. Basic Knowledge about Microsoft Azure
4. Installed Visual Studio 2022
5. Microsoft Azure CLI installed
6. VsCode or any Text editor
7. Basic NodeJS or Javascript

Steps: -

1. Create a Microsoft Azure account and fill up the basic details or have an active
Microsoft Azure account.

2. Download the sample repository or application from the given link or use your own
container: -
https://github.com/docker/getting-started/archive/refs/heads/master.zip

3. Extract the zip file to get started to see the contents as shown –

4. Open the ‘app’ folder in your preferred text editor (We will be using Visual Studio

Code)

5. Login to the Docker hub page and Download Docker Desktop from the given link: -

https://hub.docker.com/

https://github.com/docker/getting-started/archive/refs/heads/master.zip
https://hub.docker.com/

6. Run the installer for docker and follow the basic steps. Let it complete the installation

7. Start the Docker Desktop service by launching the application. You should receive the
following screen upon successful installation and is ready for work.

8. Go back to the text editor (VSCode) and create a “Dockerfile” in the root directory of
the application. The Dockerfile must have no extension. A Dockerfile is basically a
text-based script of instructions that is used to create a container image.
Add the following contents in the same:

syntax=docker/dockerfile:1
FROM node:12-alpine
RUN apk add --no-cache python2 g++ make
WORKDIR /app
COPY . .
RUN yarn install --production
CMD ["node", "src/index.js"]
EXPOSE 3000

9. Open a terminal in the root directory or use the VScode terminal to build the
container image using the “docker build” command. This command uses the
Dockerfile we created to build a new container image with node v12.
$ docker build -t getting-started .

10. When the docker build completes, it will show the following screen:

11. We can start and test the app container we built by running the command

$ docker run -dp 3000:3000 getting-started

The string we got as output represents the ID of the container and means that the
container is successfully up and running.

12. You can see and test the app container running on http://localhost:3000.

We have successfully built and tested the container now let’s move onto deployment to
Microsoft Azure

13. Make sure you have installed Azure Cli or download from the official website
14. First, we will have to create a container registry on Microsoft Azure:

a. Select Create a resource > Containers > Container Registry.

http://localhost:3000/

b. Navigate to “Container Registries on Azure Website”

c. Tap on create container registry and keep the following configuration

d. Click on review and create > create and you should receive a deployment

successful message on screen with container registry showing up

e. Go to the resource to see the details as shown

f. Return to the terminal and run the following command

$ azacr login --name <registry-name>

This sets the container registry on docker up on local machine or app directory
so that we can push the container.

g. The setup is completed as you can see
15. Let’s push our container image and run the container. Let’s push the image to the

registry. Use the following command. Replace <login-server> with the name available
on the container details webpage
$ docker push <login-server>/getting-started:latest

It might take a few minutes to push the image to the Azure Container.

16. Once completed it should show the following screen

17. Check the Docker Webpage to see the container you created. Navigate to

repositories from the tab on the left.

You can see the container we pushed in the list

18. Click the container to see the details of the container like version no, digest etc.

19. Now that we have deployed the container , suppose we want to clean up the
resources and services i.e., the container itself. Then In that case we can simply
delete the resource group itself.

Simply click on delete to delete the container
Navigate to resource group and delete the resource group that we created to
unallocated all the resources and services associated with it.

Use Cases from Business Point of View-

An organisation or business usually produce several containers especially in IT industry,
managing them manually is a difficult task. So Azure and docker can help IT industry by
deploying them on cloud so that it’s easier to manage their web applications and servers.

An organisation providing cybersecurity services or a company looking to secure its system
can use the containers on Azure to test various other software. Using containers on Azure
they can conduct tests using different configurations simultaneously such as DOS or DDOS
attacks. Making 100s of containers is very easy on docker so such attacks are very easy to
perform using Azure and docker. Also, Azure provides different server locations and
demographics and hence conducting a more varies set of security tests.

Challenges Faced :

containers are however directed to performance overhead due to overlay networking,
interfacing within containers and the host system and so on.

The one major issue is if an application designed to run in a Docker container on Windows
IaaS VM, then it can’t run on Linux VM or vice versa.

Docker creates new security challenges like the difficulty of monitoring multiple moving
pieces within a large-scale, dynamic Docker environment. IaaS VM security is a overhead.

Business Benefits:

Fast application deployment

Transferable across machines – an application and all its dependencies can be grouped into
a separate container that is autonomous from the host version of Linux kernel, platform
configuration, or deployment type.

we can pursue succeeding versions of a container, inspect irregularities, or go back to
previous versions.

we can use a distant Azure container repository to share our container with others, and it is
also desirable to configure our own individual repository.

